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Abstract—Reliable perception is critical for autonomous vehi-
cles (AVs), particularly in collaborative systems where multiple
agents share sensor data to improve environmental awareness.
However, most collaborative object detection frameworks assume
ideal sensor conditions and degrade sharply when exposed to
noise, occlusion, or hardware variability—issues common in
real-world deployment. In this work, we present a noise-aware
training framework that improves the robustness and efficiency
of 3D object detectors by injecting Gaussian noise into LiDAR
point clouds during training. Using the BM2CP architecture and
the DAIR-V2X dataset, we evaluated a range of training regimes,
both constant and progressive, in more than 1,400 inference trials.
We find that models trained with curriculum-style exposure to
increasing noise levels degrade more gracefully under inference-
time corruption, generalize better across sensor quality, and
converge faster than traditional baselines. For instance, a model
trained with heavy noise for just 20 epochs outperforms a
baseline trained for 50 epochs when evaluated on degraded input,
highlighting the accelerated rate of convergence enabled by noise-
infused training. These findings demonstrate that robustness is a
tunable and scalable property, offering a practical path toward
safer and more cost-effective AV perception in noisy, uncertain,
or resource-constrained environments.

Index Terms—Collaborative Perception, LiDAR, Gaussian
Noise, Robustness, 3D Object Detection, Autonomous Vehicles

I. INTRODUCTION

Autonomous vehicles (AVs) must reliably detect pedestri-
ans, cyclists, and other vehicles under diverse and unpre-
dictable conditions. However, even small perception errors—
due to occlusion or degraded sensors—can lead to catastrophic
failures. Ensuring robust, complete environmental awareness
remains a major hurdle in AV safety.

To achieve comprehensive and reliable perception, au-
tonomous vehicles increasingly rely on collaborative methods
that combine sensor data from multiple agents [1]], [2]. By
sharing information, vehicles can overcome occlusions and
blind spots that limit single-agent perception. While much
of the literature focuses on optimizing communication strate-
gies or reducing latency through techniques like feature-level
fusion [3] or edge computing [4]], less attention has been
paid to the quality and reliability of the data itself. In real-
world deployments, collaborative systems must contend with
noisy, incomplete, or low-fidelity sensor input, especially from
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cost-constrained hardware [5]]. This motivates the need for
perception models that are robust not only to communication
constraints, but also to degraded or uncertain data inputs.

One ongoing challenge in 3D collaborative vehicle percep-
tion is the extreme cost of high-quality LiDAR sensors. For
example, the self-driving taxi company Waymo spends more
than $7,500 to manufacture a single LiDAR sensor [6]. This
high cost makes it nearly impossible for automotive man-
ufacturers to mass produce safe and affordable autonomous
vehicles. Collaborative perception algorithms work best when
there are many sensor-equipped vehicles in the same physical
area, so the widespread deployment of such safety-critical
algorithms is contingent on affordable LiDAR of sufficient
quality. We aim to address this challenge by developing a
model that works well for low-cost LiDAR modules (which
produce noisier data than their more expensive counterparts),
thereby making collaborative perception more feasible in the
real world.

Another challenge in vehicle perception is that existing
models are often overfitted to simulated data setsets that do
not reflect real-world driving conditions [7]. We address the
overfitting problem by working to maintain high performance
despite poor data quality, making a model more robust to
natural data variance.

We address these challenges by training collaborative per-
ception models to anticipate and adapt to noisy sensor in-
puts. By injecting Gaussian noise into LiDAR point clouds
during training, our models learn to generalize across sensor
fidelity levels, improving their performance in real-world, cost-
constrained environments.

Our primary contributions are as follows:

o Propose a noise-aware training framework that improves
the robustness of collaborative perception to noisy data.

o Show that models trained with progressive Gaussian noise
exhibit significantly slower performance degradation un-
der increasing inference-time noise.

o Demonstrate that noise-injected models converge faster
than baselines, enabling quicker deployment.

o Validate our approach on a real-world dataset (DAIR-
V2X) using the collaborative perception framework
BM2CP.



II. RELATED WORKS

Collaborative perception has been widely explored in recent
years as a solution to the limitations of single-agent systems,
particularly occlusion and incomplete scene coverage [[8], [9].
These methods aggregate sensor data from multiple vehicles
to enhance detection accuracy but often introduce additional
latency due to inter-agent communication.

Single-Agent Perception. Traditional perception systems rely
on either LiDAR or cameras—or a fusion of both-mounted
directly on a single vehicle. While these systems are efficient
and cost-effective, their performance is limited by their fixed
field of view and vulnerability to occlusion [10]]. Recent mod-
els such as ICanC [11]], RT3D [12], and AutoVision [13] have
improved single-agent perception across different modalities,
but they cannot overcome fundamental perspective limitations.

Collaborative Perception. Collaborative multi-agent percep-
tion leverages data from nearby vehicles to provide more
complete situational awareness. BM2CP [14], MDNet [15],
LCV2I [5], and Where2Comm [3[] adopt multimodal fusion
strategies that incorporate both LiDAR and camera data. Liu
et al. [16] and Richards et al. [4] explore modality-agnostic
frameworks for perception-aware communication.

Among these, Biased Multi-Modal Collaborative Perception
(BM2CP) stands out for its hybrid voxel fusion design, which
integrates depth information from LiDAR and projected cam-
era features. It selectively incorporates data from neighboring
vehicles to fill in uncertain or occluded regions. This makes
BM2CP particularly robust to sensor dropout, although it
assumes high-quality sensor input and lacks robustness guar-
antees under degraded conditions. Our work builds on BM2CP
by relaxing this assumption and training the model to handle
noisy inputs.

Feng et al. [5]] propose LCV2I, a lightweight collaborative
perception model that fuses low-resolution LiDAR and camera
data. By using regional feature enhancement and adaptive
transmission, LCV2I achieves 60% lower bandwidth and 20%
lower latency than BM2CP, though with a small tradeoff
in detection accuracy. However, neither LCV2I nor BM2CP
explicitly models sensor degradation or trains for robustness
across varying data quality. Prior work on noise injection in 3D
deep learning shows that adding Gaussian perturbations can
improve model resilience to corruption [[17]], and curriculum-
style learning strategies have been shown to enhance general-
ization in noisy environments [/18§].

Our method complements this body of work by introducing
a noise-aware training strategy that improves resilience to real-
world sensor variance, particularly relevant for low-cost, low-
resolution LiDAR deployment.

III. METHODS

A. Model and Dataset

We build on BM2CP [14], a collaborative 3D object de-
tection framework that fuses LiDAR and camera data from
multiple vehicles. BM2CP supports partial modality fusion,

allowing it to function even when certain sensors are unavail-
able or degraded. We retain BM2CP’s original architecture
and fusion strategies without modification, focusing solely on
noise injection during the data loading phase. For training
and evaluation, we use the DAIR-V2X dataset [2f], a real-
world collection of synchronized LiDAR and camera data from
connected autonomous vehicles.

B. Noise Injection Strategy

To simulate data degradation and promote robustness, we
inject zero-mean isotropic Gaussian noise into the LiDAR
point clouds. This noise is applied independently to each
point’s (x,y, z) coordinates. For a given standard deviation o,
the noise tensor is sampled from N (0, 02) and added to each
point cloud as it is loaded. We implement this by modifying
BM2CP’s data loader to conditionally inject noise based on
an environment variable, enabling the same mechanism to be
used during both training and inference.

Noise is added at inference time to benchmark the model’s
robustness under noisy deployment conditions, such as those
arising from low-cost or poorly calibrated LiDAR hardware.

C. Training Regimes

We explore four training regimes with increasing noise
levels over time. Each regime consists of 50 training epochs,
divided into five 10-epoch stages. Table [I] shows the noise
standard deviation used in each stage for every regime. The
No Noise regime is used as a baseline, as it represents standard
supervised learning under clean conditions. The next three
progressive regimes are designed to simulate a curriculum
learning approach, gradually increasing the model’s resilience
to more extreme sensor noise. We also introduce four constant
regimes trained at fixed noise levels, to serve as baselines for
our progressive noise regimes.

Epoch Range
1-10 \ 11-20 \ 21-30 \ 31-40 \ 41-50

Training Regime

No Noise (Baseline) || 0.00 | 0.00 | 000 [ 000 [ 000 |

Light Noise 0.00 0.01 0.02 0.03 0.05
Moderate Noise 0.00 0.03 0.05 0.08 0.12
Heavy Noise 0.00 0.05 0.10 0.15 0.20
Constant 0.05 0.05 0.05 0.05 0.05 0.05
Constant 0.10 0.10 0.10 0.10 0.10 0.10
Constant 0.20 0.20 0.20 0.20 0.20 0.20

TABLE 1I: Noise schedules for each training regime. Each model was
trained for 50 epochs in five stages, with noise standard deviation (o) increas-
ing according to the values shown. Progressive regimes simulate curriculum-

style learning, while constant regimes apply fixed noise throughout.

D. Evaluation Metrics

In each experiment, we evaluate the performance using
the average precision (AP) at intersection-over-union (IoU)



thresholds of 0.3, 0.5, and 0.7, which are standard in 3D
object detection literature. AP is measured as the ratio between
true positives and all positives. IoU is measured as the ratio
of intersecting area to union area between the predicted and
ground truth bounding boxes for given objects.

IV. EXPERIMENTAL SETUP
A. Hardware and Environment

All experiments were conducted using 10 NVIDIA RTX
Quadro 6000 GPUs (24GB VRAM each) distributed across a
multi-GPU cluster. Training and inference were implemented
using PyTorch 1.10.1 with CUDA 12.1. Each model was
trained on a dedicated GPU, with the four training regimes
run in parallel. A single 10-epoch training phase required
approximately 6 hours, while full 50-epoch training for one
model took about 30 hours.

Inference jobs were distributed across all 10 GPUs, running
20 concurrent instructions (2 per GPU). Each instruction
corresponds to a specific model checkpoint and Gaussian noise
level, and took approximately 45 minutes to complete. The
full set of 1,400 inference trials was completed in roughly 60
hours.

B. Dataset Preparation

We use the DAIR-V2X dataset [2], a real-world collabora-
tive perception dataset that includes time-synchronized LiDAR
and camera data from connected autonomous vehicles. Our
experiments focus on the vehicle-to-vehicle (V2V) scenario
using paired ego and partner agent data.

We follow the standard DAIR-V2X split, consisting of
50,000 frames for training, 10,000 for validation, and 11,254
for testing. LIDAR point clouds are voxelized and projected
according to the BM2CP preprocessing pipeline, with no
additional filtering or downsampling.

C. Training Configuration

Each model was trained for 50 epochs using a batch size of
2 and a learning rate of 1 x 102 with the Adam optimizer.
No learning rate scheduling or weight decay was applied. All
models used the same configuration to enable fair comparisons
across regimes. We used a fixed random seed for each training
run to ensure reproducibility.

D. Inference Protocol

To evaluate robustness, we conducted inference tests for
each model under Gaussian noise applied to the LiDAR input.
We swept the standard deviation of the added noise from 0.00
to 0.80 in increments of 0.02, resulting in 40 noise levels
per model checkpoint. This range of noise levels far exceeds
normal point cloud tolerances, allowing for comprehensive
stress testing. Inference was run at 10-epoch intervals (e.g., 10,
20, 30, 40, 50 epochs), yielding 200 evaluations per regime.
With 7 regimes, this resulted in a total of 1,400 evaluations.

Average precision (AP) was computed at three standard IoU
thresholds: 0.3, 0.5, and 0.7. These metrics are defined in
Section Each trial was evaluated on the full DAIR-V2X
test set with the same conditions to ensure comparability.

V. RESULTS & DISCUSSION

Our experiments demonstrate three key findings: (1) noise-
aware training improves model robustness under degraded
sensor inputs, (2) regimes that were gradually exposed to
increasing levels of noise performed better than those that
received constant noise levels across training epochs, and (3)
regimes trained with noise converge faster, requiring fewer
epochs to outperform baseline models.

Fig. [T] visualizes how performance degrades as Gaussian
noise increases. At low noise levels (0.00-0.10 meters), all
regimes perform similarly, with Light or No Noise training
slightly outperforming others. However, as noise increases
beyond 0.2 meters, the performance of the baseline model
collapses rapidly, while models trained with progressively
more noise maintain significantly higher accuracy. At 0.5
meters, the Heavy Noise model achieves 41.9 AP@0.3, 36.0
AP@(.5, and 14.0 AP@0.7, dramatically outperforming all
other regimes.

Table || highlights this trend numerically. Across all ToU
thresholds, we observe a consistent crossover pattern: Light
Noise performs best at low noise, Moderate Noise leads
at mid-range levels, and Heavy Noise dominates at high
degradation. The uniformity of this progression across all
three IoUs reinforces the generalizability of our approach.
Moreover, these results demonstrate that robustness is not
only a byproduct of noise, but something that can be directly
learned and scaled with training-time exposure.

Furthermore, Fig. [J] illustrates the relative performance
between progressive and constant noise regimes. Progressive
training regimes perform better under higher levels of training
noise, since they have the opportunity to form key associ-
ations on clean data before noise is introduced. However,
low-amplitude constant regimes are more effective than low-
amplitude progressive regimes when subjected to noisy data,
indicating that training on too little noise hinders the develop-
ment of noise-robust associations.

Additionally, model performance generally improves as the
number of training epochs increases, as seen in Fig. |3| Noisier
models also converge more rapidly. Fig. §] compares the
Heavy Noise model trained for only 20 epochs to the baseline
model trained for 50 epochs. Despite using just 40% of the
training time, the Heavy model consistently outperforms the
baseline under moderate and high noise levels. This suggests
that early exposure to noisy data promotes faster learning of
generalizable features. In practical terms, this enables faster
fine-tuning in deployment settings where compute or time
budgets are limited.

Together, these findings suggest that noise-aware training
provides a scalable, generalizable strategy for robust collab-
orative perception. By embracing input uncertainty during
training, models become more resilient to sensor imperfections
and better suited for deployment on low-cost or degraded
hardware. This opens the door to safer, more reliable, and
more affordable AV systems, especially in challenging real-
world conditions.



Training AP@0.3 AP@0.5 AP@0.7

Regime 0.00 | 0.10 [ 020 | 0.30 | 040 [ 0.50 || 0.00 | 0.10 [ 0.20 | 0.30 | 0.40 | 0.50 || 0.00 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50
No Noise | 69.7 [ 682 | 60.0 | 41.6 | 198 | 75 || 644 | 633 [ 54.8 | 367 | 161 | 5.1 || 494 [ 47.0 [ 343 | 167 | 45 | 08 |
Light Noise 702 | 69.2 | 64.5 | 49.6 | 27.4 | 106 || 653 | 643 | 595 | 447 | 23.1 | 7.8 || 50.8 | 49.1 | 403 | 227 | 75 | 15
Moderate Noise || 69.7 | 69.3 | 67.6 | 60.7 | 43.0 | 21.9 || 64.7 | 64.5 | 62.7 | 553 | 37.7 | 17.7 || 49.6 | 49.5 | 45.6 | 32.5 | 160 | 48
Heavy Noise 692 | 69.1 | 683 | 653 | 57.5 | 41.9 || 64.2 | 64.1 | 63.1 | 60.0 | 51.7 | 36.0 || 47.9 | 48.6 | 469 | 41.1 | 285 | 14.0
Constant 0.05 678 | 67.8 | 633 [ 537 ] 374 | 187 ] 631 | 63.1 | 585 [ 480 | 313 | 135 ] 492 [ 487 [ 407 | 252 | 99 | 25
Constant 0.10 || 66.2 | 65.6 | 64.4 | 57.4 | 392 | 19.6 || 61.4 | 61.0 | 59.4 | 52.0 | 33.8 | 15.6 || 46.4 | 46.6 | 43.0 | 31.3 | 148 | 46
Constant 0.20 || 672 | 67.5 | 66.3 | 64.3 | 56.7 | 39.8 || 62.2 | 62.5 | 61.6 | 59.2 | 51.0 | 34.2 || 453 | 463 | 454 | 41.2 | 29.6 | 15.1

TABLE II: Average Precision (AP) at IoU thresholds of 0.3, 0.5, and 0.7 for all training regimes under increasing inference-time noise. Results are
reported at six levels of Gaussian noise (standard deviation in meters). Bold values indicate the highest performance at each noise level across all regimes.
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Fig. 1: Model robustness under increasing LiDAR noise at three IoU thresholds. Each curve represents a training regime evaluated at 50 epochs. From
left to right, subplots show AP at IoU = 0.3, 0.5, and 0.7. Progressive noise regimes degrade more gracefully than constant or no-noise baselines.
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Fig. 2: Progressive noise exposure outperforms constant noise training. At each inference-time noise level, progressive regimes (blue) achieve higher
AP@0.5 than constant-noise counterparts (orange), particularly at moderate to high degradation levels.
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Fig. 3: Robustness improves over training epochs. At each inference-time
noise level, we plot model performance across multiple training checkpoints
(epochs). Models trained for more epochs tend to perform better than those
trained for fewer epochs, especially at high inference-time noise levels.
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Fig. 4: Noise-trained models converge faster than baselines. Average
Precision (AP@0.5) comparison between the Heavy Noise regime trained for
20 epochs and the baseline No Noise regime trained for 50 epochs. Despite
reduced training time, the noise-aware model maintains superior robustness
under moderate to high inference-time noise.



VI. CONCLUSION

We present a noise-aware training framework for improv-
ing the robustness and efficiency of collaborative 3D object
detection systems. By injecting Gaussian noise into LiDAR
point clouds during training, we enable perception models to
generalize across a wide range of sensor conditions, including
those produced by low-cost or degraded LiDAR hardware.
Using the BM2CP framework and the real-world DAIR-V2X
dataset, we evaluate both progressive (curriculum-style) and
constant noise training regimes, comparing their ability to
resist inference-time corruption.

Our findings show that models trained with progressively
increasing noise degrade more gracefully under sensor cor-
ruption and converge faster than baseline models trained
without noise. Notably, progressive noise regimes consistently
outperform both no-noise baselines and constant-noise regimes
at high degradation levels. In some cases, models trained for
only 20 epochs with noise exposure match or exceed the
performance of fully trained baselines, highlighting substantial
gains in training efficiency.

Furthermore, our results reinforce the idea that robustness
is not an incidental byproduct but a learnable and tunable
property of the training process. The use of curriculum-style
noise exposure enables smoother optimization and stronger
generalization, especially in safety-critical scenarios where
data quality cannot be guaranteed. This positions noise-aware
training as a scalable strategy for deploying collaborative
perception in cost-constrained or uncertain real-world envi-
ronments.

In future work, we plan to explore alternative noise modali-
ties, including non-Gaussian and adversarial perturbations, and
extend our curriculum framework to additional 3D perception
architectures beyond BM2CP. We also aim to develop formal
metrics and adaptive scheduling policies for robustness-aware
training. Together, these directions will contribute to a deeper
understanding of how deep learning models can be made
resilient to the imperfections that define real-world autonomy.
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