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Abstract—Behavioral Cloning (BC) is a simple and widely used
approach in Imitation Learning (IL), but its performance is
highly sensitive to the quality of demonstration data. In this
work, we evaluate the robustness of BC policies trained on
noisy demonstrations generated by MimicGen, a synthetic data
generation system that augments a small number of human
demonstrations through scene variation and trajectory stitch-
ing. We systematically inject Gaussian spatial noise into the
action trajectories of MimicGen-generated data and train BC
policies across 11 robotic manipulation tasks. We find that small
amounts of noise improve generalization, whereas higher levels
predictably degrade policy success. To characterize this behavior,
we introduce a four-parameter sigmoid model that captures the
relationship between noise amplitude and downstream policy
performance. Our model achieves an aggregate R2 of 0.9962, and
can be estimated using just one or two data points with under 4%
error. This framework offers a lightweight, quantitative tool for
assessing demonstration quality and robustness in IL pipelines,
supporting safer deployment of automated systems in domains
where clean supervision data may be limited.

Index Terms—Robotics, Imitation Learning, Gaussian Noise,
Robustness, Sigmoid

I. INTRODUCTION

Imitation Learning (IL) enables robots to learn complex
behaviors by mimicking demonstrations rather than relying on
hand-engineered reward functions or extensive trial-and-error.
Among the most accessible forms of IL is Behavioral Cloning
(BC), which uses supervised learning to train a policy that
maps observations to actions. While simple and scalable, BC
is known to be highly sensitive to the quality and distribu-
tion of its training data. In practical robotics settings, such
as teleoperation, in-home assistance, or remote exploration,
demonstrations may be noisy due to operator delay, sensor
jitter, or labeling inconsistencies. Understanding how such
noise affects downstream policy performance is crucial for
robust deployment.

To address data scarcity in IL, recent systems like
MimicGen [1] automate the generation of diverse demonstra-
tions using a limited set of human-collected seeds. Mimic-
Gen works by segmenting demonstrations into object-centric
subtasks, applying stochastic scene variation and geometric
transformations, and stitching the segments into full trajecto-
ries. These generated demonstrations are then used to train
BC policies. However, despite its scalability, MimicGen does
not guarantee perfect trajectory fidelity, and prior work has
not explored how noisy or perturbed demonstrations affect the
resulting policy.

In this paper, we examine how Gaussian noise injected into
MimicGen-generated demonstrations influences the perfor-
mance of BC-trained policies across a variety of manipulation
tasks. Specifically, we apply controlled spatial perturbations to
the action sequences within MimicGen’s synthetic demonstra-
tions and use them to train BC policies from scratch. We then
evaluate each trained policy’s success rate on a fixed test set
of unperturbed demonstrations.

Our experimental pipeline proceeds as follows:

1) Generate synthetic demonstrations using MimicGen
from a small set of human seeds.

2) Inject isotropic Gaussian noise into each trajectory’s 3D
spatial components with varying standard deviations (σ).

3) Train separate BC policies on each noisy dataset.
4) Evaluate each policy and record its success rate.

To model the relationship between noise level and down-
stream performance, we fit a four-parameter sigmoid function
that captures early-stage robustness, eventual degradation, and
asymptotic performance bounds. We further show that this
function can be estimated with high accuracy using only
one or two observed performance points, enabling lightweight
robustness diagnostics without exhaustive retraining.

This analysis is conducted across 11 manipulation tasks and
30 distinct noise levels. Our results show that while small
amounts of noise can sometimes enhance generalization, per-
formance degrades predictably past a task-dependent inflection
point. These trends are consistent and well-captured by our
proposed sigmoid model, with an aggregate R2 of 0.9962 and
prediction errors under 4% when using minimal data.

Contributions:

• A systematic study of how trajectory-level Gaussian noise
in MimicGen demonstrations affects BC policy perfor-
mance across 11 tasks.

• A four-parameter sigmoid model that accurately captures
the noise-performance relationship.

• A predictive framework for estimating robustness with
minimal data, offering a practical tool for evaluating
demonstration quality in IL pipelines.



II. RELATED WORKS

A. Imitation Learning and Demonstration Quality

Imitation Learning (IL), and particularly Behavioral Cloning
(BC), enables robots to learn visuomotor policies from demon-
strations. While BC is simple and scalable, its performance
is known to degrade under distribution shift or imperfect
supervision [2]. Several methods have explored ways to
augment or densify demonstration data, including Diffusion
Policy [3], which models trajectories as conditional denoising
diffusion processes. However, most IL studies either assume
clean demonstrations or focus on large-scale data augmen-
tation—leaving open the question of how noisy supervision
affects downstream policy performance.

B. Noise Injection in Neural Networks

Injecting noise during training is a classic and effective
regularization technique, shown to improve generalization and
encourage exploration of flatter minima. Zhou et al. (2019)
proved that stochastic perturbations can help escape local
optima in training deep networks [4]. More recently, Bayesian
approaches have framed noise injection as approximate in-
ference, using techniques like Monte Carlo noise addition to
estimate uncertainty alongside performance [5].

C. Robustness in Robotics

Real-world robot deployments frequently face scenarios
with corrupted sensor input, inaccurate control, or mislabeled
feedback. Prior research has examined how training under
noise, especially label noise, can both undermine policy learn-
ing or, paradoxically, bolster robustness. For instance, models
exposed to stochastic label perturbations early in training
demonstrate increased resilience to later noise injection [6],
[7]. While noise-resistant learning methods are prevalent in
perception and classification domains, formal, quantitative
modeling of noise impact in imitation learning, especially us-
ing synthetic pipelines like MimicGen, has not been previously
performed. Our work fills this gap with a structured regression-
based analysis.

D. Synthetic Demonstration Frameworks

Several recent systems have emerged to generate synthetic
demonstration data from limited human inputs, enabling data-
efficient robot training:

MimicGen uses a few human demonstrations, segments
them into object-centric sub-tasks, transforms these segments
to new scenes, and stitches them into full demonstrations. It
has produced over 50,000 demonstrations across 18 tasks with
just 200 human examples, and has been shown to match
or exceed performance obtained with fully human-collected
data [1].

DemoGen adapts single human demonstrations into many
synthetic ones by spatially transforming trajectory segments
and rendering visual inputs using 3D point-cloud editing.
DemoGen has improved visuomotor generalization on real-
world setups with only one source demo [8].
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Fig. 1. Experimental pipeline for robustness evaluation. Gaussian noise
is injected into source demonstrations before MimicGen augmentation. BC
policies are trained on the resulting datasets and evaluated on clean tasks to
measure noise-induced performance degradation.

SkillMimicGen builds on this concept by segmenting
demonstrations into reusable skills and recombining them
across contexts using motion planning and a hybrid skill
policy. It produced over 24,000 skill-based demonstrations
and demonstrated zero-shot sim-to-real transfer, outperforming
MimicGen by roughly 24% in success rates [9].

E. Our Contribution

Unlike prior work that introduces new demonstration-
generation systems or treats noise primarily as a tool for
data augmentation, our contribution lies in rigorously analyz-
ing how Gaussian spatial noise impacts task performance in
existing imitation learning pipelines like MimicGen. Rather
than proposing a new generator, we focus on modeling ro-
bustness: we introduce a parameterized sigmoid function that
quantitatively captures how task success rates evolve with
increasing noise. This model enables interpretable, task-level
assessments of noise sensitivity and allows performance to
be estimated from just one or two data points, making it
lightweight and practical for real-world diagnostics. Our work
fills a critical gap by positioning noise not as a nuisance, but as
a measurable and sometimes beneficial factor, offering insights
at the intersection of data augmentation, uncertainty modeling,
and scalable robot learning.

III. METHOD

A. Problem Definition

Consider a robotic actuator designed to perform task M.
Suppose we have source demonstrations τ (j) ∈ DM,src.
Suppose we inject Gaussian noise with standard deviation σ
into each 3D position component of each source demonstra-
tion. Our goal is to model the relationship between the level
of Gaussian noise σ injected into synthetic demonstrations
and the resulting performance of a BC policy trained on
those demonstrations. For each task M, we inject Gaussian
noise into the spatial components of MimicGen-generated
trajectories and use the resulting dataset to train a BC policy
from scratch. We then evaluate the trained policy’s success
rate on a fixed set of clean validation scenes. We model this
relationship using a parameterized sigmoid function SM(σ)
that maps noise amplitude to task success rate ρM.

We model the relationship between noise magnitude σ and
performance ρ according to Eq. 1:

S(σ) = λ

(
1

δ + eκσ+χ

)
(1)



Where λ, δ, κ, and χ represent the scaling factor, vertical
offset, steepness, and horizontal shift, respectively. This 4-
parameter sigmoid captures initial improvement, performance
plateau, and degradation. We fit this using full-curve opti-
mization and a 1-2 point linear approximation. This allows
us to determine the distribution’s key aspects without having
to perform extensive experiments.

B. One-Dimensional (1D) Sigmoid Parameter Estimation

In the case that no noise experiments are conducted, we can
still develop a sigmoid model with parameters approximated
by using the model’s baseline performance. Let ρ0 be the per-
formance of a model when no noise is injected, i.e. ρ0 = ρ(0).
This will serve as an approximate baseline difficulty for the
task M. Since ρ0 is typically among the highest values in
the dataset, it is reasonable to set the scale λ := ρ0, whose
value is given. Then, we will optimize parameters δ, κ, and χ
according to the following linear system:

λ
δ
κ
χ

 =


0 1
δ0 δ1
κ0 κ1

χ0 χ1

[
1
ρ0

]
= A1Dx⃗1D (2)

C. Two-Dimensional (2D) Sigmoid Parameter Estimation

In the case that only limited noise experiments are per-
formed, we can formulate a better approximation for the
sigmoid function’s parameters by having some insight into the
model’s behavior. Let ρ1 be the performance of a model when
a moderate amount of noise is injected. We assume that this
moderate noise threshold is given, although it varies depending
on the task. We optimize the model’s parameters according to
the following linear system:

λ
δ
κ
χ

 =


0 1 0
δ0 δ1 δ2
κ0 κ1 κ2

χ0 χ1 χ2


 1
ρ0
ρ1

 = A2Dx⃗2D (3)

D. Noise Injection Procedure

We inject Gaussian noise into the action trajectories of
source demonstrations, with standard deviation σ, as seen in
Eq. 4 and Alg. 1.

ϵ ∼ N (0, σ2), τi ← τi + ϵ (4)

After injecting noise, we use the resulting demonstrations
to train a behavioral cloning (BC) policy using supervised
learning, as illustrated in Fig. 1. Each policy is trained in-
dependently for a given noise level and task.

E. Experimental Setup and Policy Training

We evaluate 11 robotic manipulation tasks using demonstra-
tions generated by MimicGen. For each task, we begin with 10
human-provided seed demonstrations, from which MimicGen
generates 100 synthetic demonstrations by segmenting trajec-
tories, applying scene variation, and stitching object-centric
subtasks.

Algorithm 1: Noise Injection Experimental Procedure
Data: Task M, noise level σ, trials n, dataset Dsrc

Result: Success rate R
1 Function NoiseExperiment(M, σ, n,Dsrc):
2 Dnoisy ← ∅
3 foreach trajectory τ ∈ Dsrc do
4 Inject noise ϵ ∼ N (0, σ2) to τ
5 Append to Dnoisy

6 end
7 Generate demos with MimicGen
8 Count successes and return success rate R
9 end

To simulate imperfect demonstrations, we inject Gaussian
spatial noise with standard deviations in the range [0.00, 0.50]
into the 3D action trajectories of the generated demonstrations.
For each noise level σ, we train a behavioral cloning (BC)
policy from scratch using the corresponding noisy dataset.
Policies are implemented using a feedforward neural network
matching the original MimicGen architecture and are trained
using standard supervised learning.

Each trained policy is evaluated on a separate validation set
of 100 clean demonstrations. We define the success rate as
the proportion of validation episodes in which all task goals
are completed successfully.

After collecting success rates across all noise levels for
each task, we fit a sigmoid degradation curve using the
curve_fit function from scipy.optimize. We ex-
tract the fitted parameters (λ, δ, κ, χ) and then solve for
matrices A1D and A2D using LinearRegression from
sklearn.linear_model, as defined in Eq. 2 and Eq. 3.

IV. EXPERIMENTAL RESULTS

A. Sigmoid Matrix Parameters

After optimizing the parameters through a linear equation
according to the sigmoid function SM, based on zero-noise
performance ρ0 = ρ(0.00) across all 11 tasks, we obtained
the following parameters:

λ
δ
κ
χ

 =


0 1

1.0387 −0.0010
17.6122 −0.0162
−3.1988 −0.0015

[
1
ρ0

]

When using two points ρ0 = ρ(0.00) and ρ1 = ρ(0.25) to
fit the Sigmoid curve, we obtained:


λ
δ
κ
χ

 =


0 1 0

0.9580 0.0004 0.0026
15.1902 0.1352 −0.1751
−2.6760 −0.0107 −0.0238


 1
ρ0
ρ1


As expected, these matrices indicate that the accuracy-

noise distribution can be appropriately modeled by a negated
sigmoid function with a horizontal offset.



Fig. 2. Success rate ρ vs. noise level σ for 11 tasks. Cumulative average
shown as bold black line.

B. Computed Sigmoid Functions

The relationship between noise amplitude and average accu-
racy across 11 tasks is illustrated in Fig. 2. Computed sigmoid
functions, including fitted sigmoids and 1D/2D predicted sig-
moids, are visualized in Fig. 3. Accuracy refers to the success
rate of a behavioral cloning policy trained on noisy MimicGen
demonstrations and evaluated on clean data.

C. Model Fitness Analysis

To evaluate model fitness, we report four standard regression
metrics in Tables I, II, and III: mean absolute error (MAE),
sum of squared errors (SSE), root mean squared error (RMSE),
and the coefficient of determination (R2). MAE and RMSE
quantify prediction error in intuitive units, with RMSE placing
greater emphasis on larger deviations, while SSE reflects total
squared deviation. R2 measures how well the sigmoid model
explains variance in the data. While all four are included
for completeness, we primarily emphasize R2 and RMSE as
they best capture trend fidelity and robustness to error. The
“Cumulative” row in each table reflects the arithmetic mean
of success rates across all 11 tasks at each noise level, with
a sigmoid fit applied to this aggregate curve to represent
average-case behavior.

Task MAE SSE RMSE R2

Square 2.37 268 3.04 0.9630
Nut Assembly 2.30 280 3.11 0.9814
Three Piece Assembly 1.70 145 2.24 0.9563
Kitchen 2.37 362 3.53 0.9720
Coffee 2.60 354 3.50 0.9841
Stack Three 2.87 337 3.41 0.9856
Hammer Cleanup 0.99 51 1.33 0.9943
Pick Place 1.97 264 3.02 0.9626
Coffee Preparation 1.37 114 1.98 0.9867
Mug Cleanup 1.57 123 2.06 0.9601
Threading 1.46 129 2.11 0.9501
Cumulative 0.969 48.1 1.29 0.9962

TABLE I
SUMMARY STATISTICS FOR FITTED SIGMOID

Task MAE SSE RMSE R2

Square 5.30 1542 7.29 0.7870
Nut Assembly 2.44 343 3.44 0.9773
Three Piece Assembly 2.65 334 3.39 0.8993
Kitchen 3.41 628 4.65 0.9514
Coffee 3.45 591 4.52 0.9735
Stack Three 4.18 826 5.34 0.9648
Hammer Cleanup 4.68 1121 6.22 0.8760
Pick Place 4.30 972 5.79 0.8662
Coffee Preparation 3.48 725 5.00 0.9150
Mug Cleanup 3.00 499 4.15 0.8374
Threading 1.55 166 2.39 0.9355
Cumulative 2.39 222 2.77 0.9823

TABLE II
SUMMARY STATISTICS FOR 1D SIGMOID

Task MAE SSE RMSE R2

Square 3.16 470 4.03 0.9350
Nut Assembly 2.93 491 4.12 0.9674
Three Piece Assembly 2.85 385 3.64 0.8840
Kitchen 3.80 784 5.20 0.9393
Coffee 2.84 428 3.84 0.9800
Stack Three 3.48 629 4.66 0.9732
Hammer Cleanup 2.58 263 3.01 0.9709
Pick Place 2.89 490 4.11 0.9308
Coffee Preparation 1.87 197 2.61 0.9769
Mug Cleanup 2.36 312 3.28 0.8984
Threading 1.59 155 2.31 0.9396
Cumulative 2.14 174 2.45 0.9861

TABLE III
SUMMARY STATISTICS FOR 2D SIGMOID

V. DISCUSSION

Our results reveal several consistent trends across the
11 evaluated tasks. Injecting low-magnitude Gaussian noise
(σ < 0.05) into MimicGen-generated demonstrations often
improves the downstream performance of behavioral cloning
(BC) policies, likely due to regularization effects that en-
courage generalization and reduce overfitting. This aligns
with established principles of data augmentation, where small
perturbations enhance model robustness. However, as noise
increases beyond a task-dependent threshold (σ > 0.10),
performance declines sharply. This degradation can be at-
tributed to distributional shift in the training data, where
excessive noise introduces harmful bias and misleads the
policy. These trends are accurately captured by our fitted
sigmoid curves, which exhibit strong alignment with empirical
performance data. Furthermore, our biparametric approxima-
tion—estimating the sigmoid from only two observed success
rates—achieves under 4% average error, demonstrating the
utility of our framework for low-cost robustness estimation.

The sigmoid model introduced in this work provides a
compact and interpretable summary of each task’s robustness
profile. The scale parameter λ reflects task difficulty under
clean data; δ captures the degradation floor; and the slope
and shift terms (κ, χ) determine sensitivity to noise. Together,
these parameters quantify the extent and onset of performance
collapse and enable lightweight performance prediction.



Fig. 3. Parameterized sigmoid models to approximate noise-accuracy tradeoff, across 11 robot manipulation tasks and cumulative data. Best-fit sigmoids are
shown in black, while the sigmoids predicted by univariate and bivariate models are shown in green and purple, respectively.

This study is limited to Gaussian spatial noise applied
during training on synthetic demonstrations in simulation.
Future work should extend the framework to other noise types
(e.g., sensor, temporal) and validate its applicability to real-
world hardware and other IL pipelines beyond MimicGen.

VI. CONCLUSION

This work presents a quantitative study of how noise in
synthetic demonstrations affects the downstream performance
of behavioral cloning in imitation learning. By fitting a four-
parameter sigmoid to success-rate data collected across 11
manipulation tasks and 30 noise levels, we found that small
amounts of noise can improve generalization, but excessive
noise predictably degrades performance. Crucially, our sig-
moid model generalizes well. The fitted version achieves an
aggregate R²=0.9962, while our one- and two-point predictive
variants maintain less than 4% average error, demonstrating
that accurate robustness diagnostics can be obtained with
minimal experimentation. This approach enables practitioners
to assess the noise tolerance of their pipelines quickly, guiding
decisions about acceptable data quality and whether controlled
noise injection could be beneficial. Future work could extend
this methodology to other noise modalities (e.g., sensor or pol-
icy noise) and validate findings in real-world robotic platforms.
As synthetic demonstration pipelines like MimicGen expand
into sim-to-real and human-in-the-loop systems, principled
noise modeling lays a foundation for robust, resource-efficient
robot learning.
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